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Robust Algebraic Preconditioners using IFPACK 3.0

Marzio Sala and Michael Heroux
Computational Mathematics and Algorithms Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1110

Abstract

IFPACK provides a suite of object-oriented algebraic preconditioners for the solution of precon-
ditioned iterative solvers. IFPACK constructors expect the (distributed) real sparse matrix to be an
Epetra RowMatrix object. IFPACK can be used to define point and block relaxation precondition-
ers, various flavors of incomplete factorizations for symmetric and non-symmetric matrices, and
one-level additive Schwarz preconditioners with variable overlap. Exact LU factorizations of the
local submatrix can be accessed through the AMESOS packages.

IFPACK , as part of the Trilinos Solver Project, interacts well with other Trilinos packages. In
particular, IFPACK objects can be used as preconditioners for AZTECOO, and as smoothers for
ML.

IFPACK is mainly written in C++, but only a limited subset of C++ features is used, in order to
enhance portability.
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1 Introduction

The parallel solution of large linear systems of type

���������
(1)

where
�

is a (distributed) large, sparse matrix and
�

and
�

two real multi-vectors, is often achieved
using iterative solvers of Krylov type (see for instance [2]). It is well known that the convergence of
Krylov methods depends on the spectral properties of the linear system matrix

�
[1, 10, 8]. Often,

�

is very ill-conditioned, so the original system (1) is replaced by

	�
� ����� 	�
� �

(left-preconditioning), or by � 	�
��	 �����

(right-preconditioning), using a linear transformation
	 
�

, called preconditioner, in order to improve
the spectral properties of the linear system matrix. In general terms, a preconditioner is any kind of
transformation applied to (1) which makes it easier to solve, in terms of iterations and CPU time.

The general (and challenging) problem of finding an efficient preconditioner is to identify a linear
operator

	
with the following properties:

1.
	

is a good approximation of
�

is some sense. Although no general theory is available, we can
say that

	
should act so that

	 
� �
is near to being the identity matrix and its eigenvalues are

clustered within a sufficiently small region of the complex plane (see for instance [6]);

2.
	

is efficient, in the sense that the iteration method converges much faster, in terms of CPU time,
for the preconditioned system. In other words, preconditioners must be selected in such a way
that the cost of constructing and using them is offset by the improved convergence properties
they permit to achieve;

3.
	

or
	 
�

can be constructed in parallel, to take advantage of the architecture of modern
supercomputers.

The choice of
	

varies from “black-box” algebraic techniques which can be applied to general
matrices to “problem dependent” preconditioners which exploit special features of a particular class of
problems. Although problem dependent preconditioners can be very powerful, there is still a practical
need for efficient preconditioning techniques for large classes of problems. IFPACK aims to fill the
need for general, black-box preconditioners, by providing a set of robust algebraic preconditioners for
parallel large scale applications.

Single-level algebraic preconditioners can be classified as follows:

1. Relaxation schemes, like Jacobi, Gauss-Seidel and symmetric Gauss-Seidel (point or block ver-
sions) [13]. These schemes seldomly provide satisfactory performances as stand-alone precon-
ditioner, but can be very effective if used as smoothers in multilevel methods (like, for example,
ML [11]);

2. Polynomial preconditioner, like Neumann, Least-Square, and Chebyshev [10].
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3. Incomplete Factorizations preconditioner, like IC( � ), ILU( � ), ILUT( � );

4. One-level domain decomposition preconditioners of Schwarz type, with minimal or wider
overlap among the subdomains [12, 9]. The local linear problems can be solved with exact
factorizations, incomplete factorizations, or other techniques.

5. Sparse Approximate Inverses (like SPAI, AINV).

IFPACK aims to define preconditioners belonging to groups 1, 3 and 4. Preconditioners of class 2 can
be accessed through AztecOO. Libraries like ParaSails or SPAI are available to define preconditioners
of class 5 (see for instance [7, 3]).

Remark 1. Single-level preconditioners can be used as stand-alone preconditioners, on in conjunction
with multilevel preconditioners. In this latter case, the single-level preconditioner is reinterpreted as a
smoother for the multilevel hierarchy. Two families of methods have been proposed in the literature: the
classical Ruge-Stüben multigrid (AMG), or smoothed aggregation (SA). The preconditioning package
Hypre can be used to define AMG preconditioners, while the Trilinos package ML can be used to build
SA preconditioners.

The goal of this document is to provide an overview of all IFPACK preconditioners. Several ex-
amples are reported to illustrate how to define and use IFPACK objects. Further details can be found
on the Doxygen documentation. The manuscript is organized as follows. Section 2 briefly outlines
the theoretical background. A general description of IFPACK preconditioners is reported in Section 3.
The IFPACK factory class is detailed in Section 4. Several examples of usage are reported in Section 5.
Parameters for IFPACK preconditioners are reported in Section 6. The analysis tools of IFPACK are
reported in Section 7. Configuration and building are detailed in Section 8.

2 Theoretical background

The aim of this section is to define concepts associated with algebraic preconditioning and establish
our notation. This section is not supposed to be exhaustive, nor complete on this subject. The reader is
referred to the existing literature for a comprehensive presentation.

2.1 Condition Number Estimates

The condition of a matrix � , called �������	� , is defined as �
������� �� � � � � � 
� � � in some appropriate
norm � . �������	� gives some indication of how many accurate floating point digits can be expected from
operations involving the matrix and its inverse. A condition number approaching the accuracy of a
given floating point number system, about 15 decimal digits in IEEE double precision, means that any
results involving � or � 
� may be meaningless.

The � -norm of a vector � is defined as the maximum of the absolute values of the vector en-
tries, and the � -norm of a matrix C is defined as

������� � ��$����������! � ��� � �"� . A crude lower
bound for the � � � � � is

��� 
�$# � �
where

# � �&% � % �('('(' � %��*) . It is a lower bound because � � � � � ����+�"�,��� 
� �"�.-/��� 
� �"�0-213� 
� # �"�
.
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2.2 Point Preconditioners

IFPACK contains a set of simple point preconditioners based on relaxation methods. Beginning with
a given approximate solution, these methods modify the components of the approximation, one or a
few at a time and in a certain order, until convergence is reached. Although still popular in some
application areas, these preconditioners are now rarely used as stand-alone preconditioner; however,
they can provide successful smoothers for multilevel methods.

All IFPACK point preconditioners are based on the decomposition
������������� �

(2)

where
�

is the diagonal part of
�

,
�	�

the strict lower part, and
�	�

the strict upper part. It is always
assumed that the diagonal entries of

�
are all nonzero.

2.2.1 Point Jacobi Preconditioner

Given a starting solution
��
���

, the (damped) Jacobi method determines the � � th component of solution
of (1) at step � - % as ����� � � 
����� ��� �� ��� �!  � ����� � � 
� 
� �#" � �#$%
where

�
is the damping parameter1 and �&��� � the ��� �(' � element of matrix

�
. This component-wise

equation can be rewritten in a vector form as

� 
�)� ���+*#� 
� � � " � � � 
� 
� � " � 
� �-, �
or, equivalently,

� 
���� � � 
�� 
� � " �.� 
� � �/� � � 
� 
� � � � � 
� 
� � " �.� 
�10 
� 
� � � (3)

where
0 
� 
� � ���/� ���2
�� 
� �

is the residual at step � � % .
This preconditioner is symmetric.

2.2.2 Point Gauss-Seidel Preconditioner

The (damped) Gauss-Seidel method at step � - % can be written as

����� � � 
����� ��� �� � � �43 � ����� � � 
�)� � � �45 � ����� � � 
� 
� � " � � $%
where

�
is the damping parameter. In vector form, one has

� 
���� � � 
�� 
� � " � � ����� � 
� � �6� ��� 
�� 
� � � � (4)

which requires, at each step � , the solution of a (lower) triangular linear system. This preconditioner is
non-symmetric.

1Clearly, is used as a solver, 7 must be set to 1 to converge to the solution of (1).
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2.2.3 Point SOR Preconditioner

The Successive Over Relaxation (SOR) method computes the � -th step using the relaxation sequence

� 
�)� ��� � 
�� 
� ���� " �&% � � � � 
� 
� � � (5)

where
� 
�� 
� ���� is the � � % step of a (non-damped) Gauss-Seidel iteration. SOR is based on the splitting� � � � ��� �.� � � � �.� " �&% � � � � � �

so that (5) can also be written as

� ��� �.� � � 
�)� ��� �.� " �&% � � � ��� � 
�� 
� �#" � � '
This preconditioner is non-symmetric.

2.2.4 Point SSOR Preconditioner

A Symmetric SOR (SSOR) step consist of the SOR step (5) followed by a backward SOR,

� �����.� � � 
�� 
���
	 � � � �.��� �&% � � � ��� � 
�� 
� � " � �
� � � �.� � � 
�)� � � �.� � �&% ��� � ��� � 
� 
���
	 � " � � ' (6)

This preconditioner is symmetric. When
� � % , we obtain

� ����� � �2
� 
���
	 � � � � 
� 
� � " �
� � ��� � � 
���� � � � 
� 
���
	 � " � ' (7)

This method is often called symmetric Gauss-Seidel.

2.3 Block Preconditioners

Block preconditioners of Jacobi and Gauss-Seidel type generalize their point counterpart by updating a
set of variables at the same time. Consider to partition the matrix

�
, the right-hand side and the solution

vector as follows:

���

�
�

� � � � � � � 	 � � � � '('(' � � � �� 	 � � � 	 � 	 � 	 � � '('(' � 	 � �� � � � � � � 	 � � � � '('(' � � � �
...

...
...

. . .
...� �	� � � � � 	 � �	� � '('(' � �	� �

�������
�
� ���

�
�

� �� 	� �
...� �

�������
�
� � �

�
�

� �� 	� �
...� �

�������
�
�

(8)

in which the partitioning of
�

and
�

into � blocks is compatible with the partitioning of
�

. Also, it is
supposed that the diagonal blocks

� � � � are square and assumed nonsingular.
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Splitting (2) can still be used to define block Jacobi and block Gauss-Seidel algorithms, with the
following definitions of

�
,
�

and
�

:

� �

�
�

� � � �
� 	 � 	

� � � �
. . . � �	� �

�������
�
�

(9)

� � �
�
�

�
� 	 � � �
� � � � � � � 	 �

...
...

. . .� �	� � � � � 	 � �	� � '('(' �

�������
�
�

(10)

� � �
�
�

� � � � 	 � � � � '('(' � � � �� � 	 � � '('(' � 	 � ��
. . . �

�������
�
�

(11)

Using definitions (9), (10) and (11), the block Jacobi method is simply as reported in equation (3).
Analogously, the block Gauss-Seidel is still described by equation (4), and the symmetric Gauss-Seidel
by equation (7).

Let us suppose to partition the set of rows of the matrix into � sets � � � � � % �('('('�� � , such that

� ��� � � � � � � � � '
Let � � be a boolean ���	� � matrix (where � � ��
 � 0� ��� � � ), whose entries are defined as

� ��� � ��� % if ����� �	
otherwise

A general (damped) block Jacobi iteration can be defined as follows:

On each processor, for each block � , Do (12)
� 
���� � � 
�� 
� � " � � )� � 
���� � � � � � � � � 
� 
� � � ' (13)

Figure 1 graphically describes the block Jacobi with variable overlap among blocks.
The (damped) block Gauss-Seidel algorithm easily derives from (13), by immediately updating the

solution vector to compute the residual. The algorithm is as follows:

On each processor, for each block � , Do (14)
� 
���� � � 
�� 
� � " � � )� � 
���� � � � � � � � � 
�)� � ' (15)
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A 4,4

A

A

A 3,3

2,2

1,1

Figure 1. The block Jacobi matrix with overlapping blocks.

2.4 Incomplete Factorization Preconditioners

A broad class of effective preconditioners is based on incomplete factorization of the linear system
matrix. Such preconditioners are often referred to as incomplete lower/upper (ILU) preconditioners.
ILU preconditioning techniques lie between direct and iterative methods and provide a balance between
reliability and numerical efficiency. ILU preconditioners are constructed in the factored form

	 ���� ��
,

with
��

and
��

being lower and upper triangular matrices. Solving with
	

involves two triangular
solutions.

ILU preconditioners are based on the observation that, although most matrices
�

admit an LU
factorization

� � ���
, where

�
is (unit) lower triangular and

�
is upper triangular, the factors

�

and
�

often contain too many nonzero terms, making the cost of factorization too expensive in time or
memory use, or both. One type of ILU preconditioner is ILU(0), which is defined as proceeding through
the standard LU decomposition computations, but keeping only those terms in

��
that correspond to

nonzero terms in the lower triangle of
�

and similarly keeping only those terms in
��

that correspond
to nonzero terms in the upper triangle of

�
. Although effective, in some cases the accuracy of the

ILU(0) may be insufficient to yield an adequate rate of convergence. More accurate factorizations will
differ from ILU(0) by allowing some fill-in. The resulting class of methods is called ILU( � ), where � is
the level-of-fill. A level-of-fill is attributed to each element that is processed by Gaussian elimination,
and dropping will be based on the level-of-fill. The level-of-fill should be indicative of the size of the
element: the higher the level-of-fill, the smaller the elements.

Other strategies consider dropping by value – for example, dropping entries smaller than a pre-
scribed threshold. Alternative dropping techniques can be based on the numerical size of the element
to be discarded. Numerical dropping strategies generally yield more accurate factorizations with the
same amount of fill-in as level-of-fill methods. The general strategy is to compute an entire row of the
��

and
��

matrices, and then keep only a certain number of the largest entries. In this way, the amount of
fill-in is controlled; however, the structure of the resulting matrices is undefined. These factorizations
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are usually referred to as ILUT( � ).
When solving a single linear system, ILUT( � ) methods can be more effective than ILU( � ). How-

ever, in many situations a sequence of linear systems must be solved where the pattern of the matrix
�

in each system is identical but the values of changed. In these situations, ILU( � ) is typically much more
effective because the pattern of ILU( � ) will also be the same for each linear system and the overhead
of computing the pattern is amortized.

2.4.1 A-priori Diagonal Perturbations

A well-known disadvantage of incomplete factorizations is that the two factors can be unstable. This
may occur, for instance, if matrix

�
in (1) is badly scaled, or if one of the pivotal elements occurs

to be very small. Computing the condition number estimate using method Condest() can help to
detect ill-conditioned factorizations. The procedure is as follows. If this condition estimate is larger
than machine precision, say greater than % 	 ��� , then it is possible that numerical errors in the application
of the preconditioner can will destroy convergence of the iterative solver (that is, the iterative solver
starts to diverge, stagnates, or aborts because it detects ill-conditioning). In this case, a-priori diagonal
perturbations may be effective.

Diagonal perturbations operate as follows: instead of using matrix
�

, we perform the factorization
on a modified matrix � 2, whose elements are defined as

� ��� � � � ��� � � �� '� ��� � ������� � � � ��� � � "
	 � ��� � � (16)

where
�

and
	

are two real parameters, to be determined by the user.
�

represents an absolute threshold
added to the matrix, while

	
is a relative threshold (that is, the actual diagonal value of the matrix to

be factored is
	

times the original value). This has the effect of forcing the diagonal values to have
minimal magnitude of

�
and to increase each by an amount proportional to

	
, and still keep the sign of

the original diagonal entry.
Although no general theory to define

�
and

	
is avaialble, it can be convenient to adopt the strategy

outlined in Figure 2.

Remark 2. Note that if the condition estimate of the preconditioner is well below machine precision and one
is not achieving convergence, then diagonal perturbation will probably not be useful. Instead, one should try to
construct a more accurate factorization by increasing the level-of-fill.

2.5 Additive Schwarz Preconditioners

IFPACK makes very easy to define and use domain decomposition preconditioners of (overlapping) Schwarz type.
The basic idea of DD methods is to decompose the computational domain � into � smaller parts �� ,��������������� � , called subdomains, such that ������� �  � � . Next, the original problem can be reformulated within

each subdomain �  , of smaller size. This family of subproblems is coupled one to another through the values
of the unknown solution at subdomain interface. This coupling is then removed at the expense of introducing
an iterative process which involves, at each step, solutions on the �  with additional interface conditions on! � #" ! � .

2This matrix is never built. The code modifies the ExtractMyRowCopy() method, and updated the diagonal value.
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1. Set the absolute threshold
� � 	 ' 	

and the relative threshold
	 � % ' 	 (equivalent to no perturba-

tion).

2. Define perturbed diagonal entries as
� � � � � � � � � � � � " � � 	 and compute the incomplete factors

�
and
�

.

3. Compute

 � � � # ��� � � � ��� � 
� # �"� where

# � �&% � % �('('('�� %�� ) .

4. If failure (

 � � � # ����� % 	 ��� or convergence is poor), set

� � % 	 
 � , 	 � % ' 	 . Repeat Steps 2 and
3.

5. If failure, set
� � % 	 
 � , 	 � % ' 	 % . Repeat Steps 2 and 3.

6. If failure, set
� � % 	 
 	 , 	 � % ' 	 . Repeat Steps 2 and 3.

7. If failure, set
� � % 	 
 	 , 	 � % ' 	 % . Repeat Steps 2 and 3.

8. If still failing, continue alternate increases in the two threshold values.

Figure 2. Simple a priori Threshold Strategy

In overlapping Schwarz preconditioner, the computational domain is subdivided into overlapping subdo-
mains, and local Dirichlet-type problems are then solved on each subdomain. The communication between the
solutions on the different subdomains is here guaranteed by the overlapping region.

The additive Schwarz preconditioner can be written as:

��� �	�
 � ��
����

� � � ���  � (17)

where � is the number of subdomains (that is, the number of processors in the computation), �  is an operator
that restricts the global vector to the vector lying on subdomain �  , �  is an operator that prolongate from
subdomain �  to � , and

� � � � �  � (18)

IFPACK supports two major cases:
� Minimal-overlap (here referred to as ”zero-overlap”): each subdomain is identified by the set of local rows

of the preconditioned matrix;
� Wider overlap: each subdomain is identified by the set of local rows of a suitable overlapping matrix.

In both cases, each processor is responsible for exactly one subdomain.
In the minimal overlap case, the �  ’s and

�  ’s are not implemented, since the required components of the
residual vector are already local. Besides, matrix (18) can be easily extracted from the local matrix, by dropping
all nonzeros corresponding to non-local columns with no communications between processors. If a wider overlap
is used, instead, each application of �  and

�  may require the importing or exporting of off-process data, and
the construction of (18) requires communications.
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Once matrices (18) have been formed, the user still need to define a strategy to apply the inverse of   in
(17). At this purpose, any IFPACK preconditioner can be adopted. Common choices are:

� To solve exactly on each subdomain with an complete LU factorization, using the Ifpack_Amesos
preconditioner. This is shown in Section 5.3.

� To solve using an incomplete LU factorization, as presented in Section 5.4.

� To furtherly decompose the local domain into smaller subdomains, then apply a block Jacobi or block
Gauss-Seidel preconditioner. This is outlined in Section 5.5.

Remark 3. Additive Schwarz preconditioners as reported in equation (17) are not scalable: their convergence
rate deteriorates as the number of subdomains (that is, of the processors) increases. Algebraic techniques exist
to add an algebraic coarse level correction to (17) to make the preconditioner scalable; see for example the
documentation of the ML package [11].

3 General Description of IFPACK Preconditioners
All IFPACK preconditioners described in this document are reported in Table 1. They are all derived from the
Ifpack_Preconditioner class.

Ifpack_Preconditioner is a pure virtual class, derived from Epetra_Operator, that standarizes
the construction and usage of IFPACK preconditioners. In fact, all IFPACK preconditioners are supposed to behave
as follows:

1. The object is constructed, passing as only input argument the pointer of the matrix to be preconditioned,
say A. A has already been FillComplete()’d3.

2. All the parameters, stored in a TEUCHOS parameters list, are set using method SetParameters(). If
SetParameters() is not called, default values will be used.

3. The preconditioner is initialized by calling method Initialize(). In this phase, all operations that do
not require the matrix values of A are performed (that is, only the structure of A is used).

4. The preconditioner is constructed by calling method Compute(). In this phase, all the operations that
require the matrix values of A are performed 4

5. MethodApplyInverse() applies the preconditioner. Any class that uses ApplyInverse() to apply
the preconditioner can take advantage of an Ifpack_Preconditioner derived object5 Note that
Compute() must be successfully called before using ApplyInverse().

6. MethodIsInitialized() returns true is the preconditioner has been successfully initialized, false
otherwise.

7. Method IsComputed() returns true is the preconditioner has been successfully computed, false
otherwise.

3It is supposed that the OperatorDomainMap(), the OperatorRangeMap() and the RowMatrixRowMap()
of the matrix all coincide, and that each row is ass igned to exactly one process..

4For example, in a time dependent setting, if the structure of A does not change from a given time step to the next but its
values do, the user can call Initialize() only once before the first time step, then Compute() at each time step. Also
calls Initialize() if not already done by the user.

5For example, AztecOO objects can use Ifpack Preconditioner objects as preconditioners.
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Class name Overlap Description

Ifpack_PointRelaxation 0 Point (damped) relaxation preconditioners (Jacobi, Gauss-Seidel, symmetric
Gauss-Seidel). Users can specify the number of Jacobi steps (sweeps), and the
damping factor. See Section 2.2.1

Ifpack_BlockRelaxation 0 Block relaxation preconditioner (Jacobi, Gauss-Seidel, symmetric Gauss-
Seidel). Users can store the diagonal blocks as dense or sparse. In the lat-
ter case, any IFPACK preconditioner can be used to apply the inverse of the
diagonal block. See Section 2.3.

Ifpack_AdditiveSchwarz user Generic additive Schwarz preconditioner. Allows for generic additive Schwarz
preconditioners, with minimal or wider overlap. In the latter case, the user
must provide the overlapping matrix. Any IFPACK preconditioner can be used
to solve the local problems. See Section 2.5.

Ifpack_IC 0 Incomplete Cholesky factorization, with dropping based on the level-of-fill of
the graph.

Ifpack_ICT 0 Incomplete Cholesky factorization, with dropping based on threshold.
Ifpack_ILU 0 Incomplete LU factorization, with dropping based on the level-of-fill of the

graph.
Ifpack_ILUT 0 Incomplete LU factorization, with dropping based on threshold.

Table 1. Description of all the IFPACK preconditioners reported in this
document. In the Table, ‘Overlap’ indicates the overlap (with 0 being
the minimal overlap case, ‘any’ means that the code can construct the
overlapping matrix for any given positive value).
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8. Method Condest() returns an estimation of the condition number of the preconditioner
�

(and not
of the preconditioner system), see Section 2.1. Accurate (and expensive) computations of the con-
dition number of the preconditioned system can be obtained by calling Condest(Ifpack CG) or
Condest(Ifpack GMRES)6. See Section 2.4.1 for more details.

9. Methods NumInitialize(), NumCompute() and NumApplyInverse() return the number of
calls to each phase.

10. Methods InitializeTime(), ComputeTime() and ApplyInverseTime() return the number
of CPU-time spent in each phase.

11. Methods InitializeFlops(),ComputeFlops() and ApplyInverseFlops() return the num-
ber floating point operations (FLOPS) occurred in each phase.

Remark 4. Some IFPACK preconditioners may require to copy the input List object given in input to
SetParameters(). In any case, the user-provided list can go out of scope before Compute() is called.
Note that changes to user-provided list after the call to SetParameters() will not affect the preconditioner,
unless SetParameters() is re-called.

Remark 5. Each Ipfack_Preconditioner object overloads the << operator. Basic information about a
given preconditioner can be obtained by simply using an instruction of the type: cout << Prec.

4 The Factory Class
The easiest way to use IFPACK is through its factory class. Let us consider the following fragment of code:

#include "Ifpack.h"
...
Epetra_RowMatrix* A; // A is already FillComplete()’d
...
Ifpack Factory;
Ifpack_Preconditioner* Prec;
string PrecType = "ILU";
int OverlapLevel = 0;
// create the preconditioner using Create()
Prec = Factory.Create(PrecType, A, OverlapLevel);
assert (Prec != 0);

// specify parameters for ILU
Teuchos::ParameterList List;
List.set("fact: level-of-fill", 5);

Prec->SetParameters();
Prec->Initialize();
Prec->Compute();
...
// Let Problem be an Epetra_LinearProblem
AztecOO Solver(Problem);
Problem.SetPrec(Prec);
// now we can solve with AztecOO

6We note that using CG or GMRES to compute and estimated condition number is an expensive operations, and should
not be used unless the accurate value of the condition number is required.
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PrecType Description

point relaxation Point relaxation preconditioner, like Jacobi, Gauss-Seidel, and
symmetric Gauss-Seidel.

block relaxation Block relaxation preconditioner, like Jacobi, Gauss-Seidel, and
symmetric Gauss-Seidel. LAPACK is used to apply the inverse
of each diagonal block.

block relaxation
(Amesos)

Block relaxation preconditioner, like Jacobi, Gauss-Seidel, and
symmetric Gauss-Seidel. Amesos is used to apply the inverse of
each block. Requires IFPACK support for AMESOS.

IC Incomplete Cholesky factorization on each subdomain.
ICT Incomplete Cholesky factorization with threshold on each subdo-

main.
ILU Incomplete LU factorization on each subdomain.
ILUT Incomplete LU with threshold on each subdomain.
Amesos Complete LU factorization on each subdomain. Requires IFPACK

support for AMESOS.

Table 2. List preconditioners supported by the Factory class.

The list of options for PrecType is reported in Table 2. Note that only one word in the above fragment of
code has to be changed to define, for instance, the Gauss-Seidel preconditioner.

5 Examples of Usage
This section contains several examples of usage of IFPACK preconditioners. A detailed list of IFPACK parameters
is reported in section 6.

5.1 Point Preconditioners

An example of usage of point relaxation preconditioners (in this case, Gauss-Seidel) is as follows:

#include "Teuchos_ParameterList.hpp"
#include "Ifpack_PointRelaxation.h"

Let A be a pointer to an Epetra_RowMatrix derived object, and let Problem be a pointer to an Epetra_LinearProblem.
We suppose that A and Problem are properly set, and method FillComplete() has been called. At this
point, we can create the preconditioner as

Teuchos::ParameterList List;
List.set("relaxation: type", "Gauss-Seidel");

Ifpack_PointRelaxation Prec(A);

17



IFPACK_CHK_ERR(Prec.SetParameters(List));
IFPACK_CHK_ERR(Prec.Initialize());
IFPACK_CHK_ERR(Prec.Compute());

Now, we can set the IFPACK preconditioner for AztecOO:

AztecOO AztecOOProblem(Problem);
AztecOOProblem.SetPrecOperator(Prec);

as call AztecOO.Iterate() as required.
Macro IFPACK_CHK_ERR() can be used to check return values. If the return value if different from 0, the

macro prints out a warning message on cerr, and returns.

5.2 Block Preconditioners

From the point of view of the implementation, block preconditioners are sensibly more complex than their point
counterpart:

1. A strategy to define the blocks has to be chosen (for instance, a linear partitioner, or a graph decomposition
algortithm);

2. block Jacobi and block Gauss-Seidel algorithms require the application of the inverse of each diagonal
block  ��  . Blocks of small dimension should be stored as dense matrices, while larger blocks require
sparse storage. In this latter case, to apply the inverse of the block can be reformulated as applying a
preconditioner for matrix  ��  . The code must allow for different choices of block preconditioners.

Let us start with the definition of the blocks. IFPACK provides the following options:
� a linear partitioning, using class Ifpack_LinearPartitioner;
� a simple greedy algorithm, using class Ipfack_GreedyPartitioner;
� an interface to METIS, using class Ifpack_METISPartitioner.

It is important to note that all blocks are local – that is, all partitioner schemes will always decompose the local
graph only7.

All IFPACK partitioners are derived from the pure virtual class Ifpack_Partitioner, and all require
in the constructor phase an Ifpack_Graph object. Ifpack_Graph’s can be easily created (as light-weigth)
conversions from Epetra_RowMatrix’s and Epetra_CrsGraph’s, as follows At this point, we can create
the preconditioner as

#include "Ifpack_Graph.h"
#include "Ifpack_Graph_Epetra_CrsGraph.h"
#include "Ifpack_Graph_Epetra_RowMatrix.h"

// use either CsrA or RowA, depending on your application
Epetra_CrsMatrix* CrsA;
Epetra_RowMatrix* RowA;

Ifpack_Graph CrsGraph* CrsGraph =
new Ifpack_Graph_CrsGraph(&(CrsA->Graph()));

Ifpack_Graph RowGrap* RowGraph =
new Ifpack_Graph_RowMatrix(RowA);

7If used in conjuction with class Ifpack AdditiveSchwarz, blocks can span more than one processor.
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Note that the Partitioner object will decompose the graph (either CrsGraph or RowGraph) into non-
overlapping sets (that is, each graph vertex is assigned to exactly one set).

The following fragment of code shows how to use a greedy partitioner to define 4 local blocks for a given
Ifpack_Graph.

#include "Ifpack_Graph.h"
#include "Ifpack_GreedyPartitioner.h"
#include "Ifpack_BlockRelaxation.h"
#include "Teuchos_ParameterList.hpp"
...

Ifpack_Graph* Graph;
// Graph is created here

Teuchos::ParameterList List;
List.set("partitioner: local parts", 4);
Ifpack_Partitioner* Partitioner = new Ifpack_GreedyPartitioner(Graph);

// set the parameters (in this case the # of blocks only)
Partitioner->SetParameters(List);

// compute the partition
Partitioner->Compute();

Once an Ifpack_Partitioner is created, we are ready to compute the block preconditioner. This
requires the extraction of all the diagonal blocks of equation (9). In IFPACK, the user can choose to store the  �� 
as dense matrices, or a sparse matrices. In the former case, the inverse of each block is applied using LAPACK8.
In the latter, the user can specify any valid Ifpack_Preconditioner.

As an example, we now create a block Jacobi preconditioner for a given Epetra_RowMatrix, say A, with
damping parameter of 0.67, and 2 sweeps. Each diagonal block is stored as a dense matrix.

#include "Ifpack_BlockRelaxation.h"
#include "Ifpack_DenseContainer.h"
...

Ifpack_Partitioner* Partitioner;
// Partitioner is created here

Ifpack_Preconditioner* Prec =
new Ifpack_BlockRelaxation<Ifpack_DenseContainer>(A);

Teuchos::ParameterList List;
List.set("relaxation: sweeps", 2);
List.set("relaxation: damping parameter", 0.67);
Prec->SetParameters(List);
Prec->Compute();

The previous example makes use of a dense containers to store the diagonal blocks. In IFPACK, a container is an
object that contains all the necessary data to solve the linear system with any given  ��  . Ifpack_DenseContainer

8LAPACK is used to factorize the matrix, then each application of
�������� � results in a dense linear system solution.
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stores each  ��  as Epetra_SerialDenseMatrix. Alternatively, one can use Ipfack_SparseContainer
to store each block as an Epetra_CrsMatrix. Sparse containers are templated with an Ifpack_Preconditioner,
so that the user can specify which IFPACK preconditioner has to be used to apply the inverse of each sparse block.

The following fragment of code illustrates how to use the direct factorization of Amesos (through class
Ifpack_Amesos9) with sparse containers. The preconditioner will be a block Gauss-Seidel one.

#include "Ifpack_BlockRelaxation.h"
#include "Ifpack_SparseContainer.h"
#include "Ifpack_Amesos.h"
...

Ifpack_Partitioner* Partitioner;
// Partitioner is created here

Ifpack_Preconditioner* Prec =
new Ifpack_BlockRelaxation<Ifpack_SparseContainer<Ifpack_Amesos> >(A);

Teuchos::ParameterList List;
List.set("relaxation: sweeps", 2);
List.set("amesos: solver type", "Amesos_Klu");
Prec->SetParameters(List);
Prec->Initialize();
Prec->Compute();

Option amesos: solver type specifies the AMESOS solver that has to be adopted. If the selected
solver is not available, then Ifpack_Amesos will create an Amesos_Klu solver10. As any IFPACK precon-
ditioner can be used, one can also adopt, for instance, a point Gauss-Seidel algorithm in each block:

Ifpack_Preconditioner* Prec =
new Ifpack_BlockRelaxation<Ifpack_SparseContainer<Ifpack_GaussSeidel> >(A);

A call to SetParameters(List)will set the parameters for the block preconditioner.

5.3 Additive Schwarz with Exact Local Solves

The following fragment of code shows the use of additive preconditioners. The local subproblems with matrix
  are solved using a (complete) LU factorization through AMESOS.

#include "Ifpack_AdditiveSchwarz.h"
#include "Ifpack_Amesos.h"

Epetra_RowMatrix* A;
// Here the elements of A are filled, and FillComplete() is called.

int OverlapLevel = 0;
Ifpack_Preconditioner* Prec =

new Ifpack_AdditiveSchwarz<Ifpack_Amesos>(A, OverlapLevel);

9This requires IFPACK to be configured with option --enable-amesos.
10KLU is compiled by default with AMESOS. Please consult the AMESOS documentation for more details.
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Teuchos::ParameterList List;
IFPACK_CHK_ERR(Prec->SetParameters(List));
IFPACK_CHK_ERR(Prec->Initialize());
IFPACK_CHK_ERR(Prec->Compute());

Remark 6. Complete factorizations can be expensive to compute, especially for problems arising from dis-
cretizations on 3D grids. The user should consider complete factorizations if the local problems are small, or
when other, cheaper preconditioners fail.

5.4 Additive Schwarz with ILU

The following fragment of code shows the use of additive preconditioners. The local subproblems with matrix
  are solved using an incomplete factorization.

#include "Ifpack_AdditiveSchwarz.h"
#include "Ifpack_ILU.h"

Epetra_RowMatrix* A;
// Here the elements of A are filled, and FillComplete() is called.

int OverlapLevel = 0;
Ifpack_Preconditioner* Prec =

new Ifpack_AdditiveSchwarz<Ifpack_ILU>(A, OverlapLevel);

Teuchos::ParameterList List;
List.set("fact: level of fill", 2);
IFPACK_CHK_ERR(Prec->SetParameters(List));
IFPACK_CHK_ERR(Prec->Initialize());
IFPACK_CHK_ERR(Prec->Compute());

The difficulty with this type of preconditioner is that it tends to become less robust and require more iterations
as the number of processors used increases. This effect can be offset to some extent by allowing overlap. Overlap
refers to having processors redundantly own certain rows of the matrix for the ILU factorization. Level-1 overlap
is defined so that a processor will include rows that are part of its original set. In addition, if row

�
is part of its

original set and row
�

of  has a nonzero entry in column � , then row � will also be included in the factorization
on that processor. Other levels of overlap are computed recursively. IFPACK supports an arbitrary level of
overlap. However, level-1 is often most effective. Seldom more than 3 levels are needed.

The user can access the factorization of the local matrix produced by templatingIfpack_AdditiveSchwarz
with classes Ifpack_IC, Ifpack_ICT, Ifpack_ILU and Ifpack_ILUT in the following way:

Ifpack_Preconditioner* Prec =
new Ifpack_AdditiveSchwarz<Ifpack_ILU>(A, OverlapLevel);

Ifpack_ILU* Inverse = Prec->Inverse();

Then, the total number of nonzeros in the L and U factors can be queried as follows:

int NumGlobalNonzerosLU = Inverse->NumGlobalNonzeros();

The L and U factors are stored as Epetra_CrsMatrix’s, whose pointers can be obtained as follows11:

const Epetra_CrsMatrix& L = Inverse->L();
const Epetra_CrsMatrix& U = Inverse->U();

11For classes Ifpack IC and Ifpack ICT the user shall use method H().
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5.5 Additive Schwarz with Local Block Preconditioners

Another possible technique to apply the inverse of   in (17) is to adopt a block preconditioner, like block Jacobi
or block Gauss-Seidel (see Section 2.3). This requires a bit more work, as we have to specify the partitioner, and
the container. Let us start with dense containers.

The required include files are:

#include "Ifpack_AdditiveSchwarz.h"
#include "Ifpack_BlockPreconditioner.h"
#include "Ifpack_Graph_Epetra_RowMatrix.h"
#include "Ifpack_DenseContainer.h"

Let A be an Epetra_RowMatrix. We suppose that FillComplete() has been called.
As always, we create a parameters list, that will be used for all IFPACK objects:

Teuchos::ParameterList List;

At this point we can create the block Jacobi preconditioner as follows:

Ifpack_Preconditioner* Prec =
new Ifpack_AdditiveSchwarz<
Ifpack_BlockPreconditioner<Ifpack_DenseContainer> >(A);

Prec->SetParameters(List);
Prec->Initialize();
Prec->Compute();

As we have used Ifpack DenseContainer, blocks are stored are dense matrices, and LAPACK is used to
apply the inverse of each block. This can be a limiting factor for large blocks. In this latter case, it is preferable to
store the blocks are sparse matrices, and use a sparse solver to apply their inverse. This can be done by resorting
to Ifpack SparseContainer. Sparse containers can be used with minor modifications. The only difference
is that we also have to specify how to apply the inverse of each block, for instance using the exact factorizations
of AMESOS:

Ifpack_Preconditioner* Prec =
new Ifpack_AdditiveSchwarz<Ifpack_BlockPreconditioner
<Ifpack_SparseContainer<Ifpack_Amesos> > >(A);

Should the user want to use a block Gauss-Seidel preconditioner (where each block is defined by partitioning
the local graph of the overlapping matrix), he/she could proceed as follows:

Teuchos::ParameterList List;
List.set("relaxation: damping factor", .67);
List.set("relaxation: sweeps",5);
List.set("partitioner: local parts", 4);
List.set("partitioner: overlap", OverlapLevel);

Epetra_RowMatrix* A; // A is FillComplete()’d.

Ifpack_Preconditioner* Prec =
new Ifpack_AdditiveSchwarz<Ifpack_BlockPreconditioner

<Ifpack_SparseContainer<Ifpack_Amesos> > >(A,OverlapLevel);

IFPACK_CHK_ERR(Prec->SetParameters(List));
IFPACK_CHK_ERR(Prec->Compute());
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6 Parameters for IFPACK preconditioners
The parameters that affect the IFPACK preconditioners are reported below. It is important to note that parameters
for all IFPACK preconditioners must be spelled as indicated: misspelled parameters will be ignored, parameters
are case sensitive, and words are separated by one space only.

For more details about the TEUCHOS parameters list we refer to the TEUCHOS documentation. Table 3 briefly
reports the most important methods of this class. IFPACK requires just a very basic usage of the parameters list.
Input parameters are set via method set(Name,Value), where Name is a string containing the parameter
name, and Value is the specified parameter value, whose type can be any C++ object or pointer.

set(Name,Value) Add entry Name with value and type specified by Value. Any
C++ type (like int, double, a pointer, etc.) is valid.

get(Name,DefValue) Get value (whose type is automatically specified by DefValue).
If not present, return DefValue.

subList(Name) Get a reference to sublist List. If not present, create the sublist.

Table 3. Some methods of Teuchos::ParameterList class.

relaxation: type [string] Relaxation scheme. Valid choices are: Jacobi,
Gauss-Seidel, symmmetric Gauss-Seidel. De-
fault: Jacobi.

relaxation: sweeps [int] Number of sweeps of the point relaxation precondi-
tioner. Default: 1.

relaxation: damping factor [double] This is the value for � in formulae (3), (4), (5)
and (6). Default: 1.0.

relaxation: min diagonal value [double] Replace diagonal values whose absolute value is
less than the specified value by this value (for point relaxation
methods only). Default: 1e-9.

relaxation: zero starting solution [bool] If true, the input values in the preconditioned vec-
tor will be used as starting solution (for relaxation methods
only). Default: true.

partitioner: type [string] Defines how to build the local blocks (for block
relaxation methods). Valid choices are: linear (use a sim-
ple linear decomposition), greedy (use a greedy algorithm
to partition the local graph), or metis (call METIS on the
local graph). Default: linear.

partitioner: local parts [int] Number of (local) subgraphs (for block relaxation
methods only). Default: 4.

partitioner: overlap [int] Overlap among blocks. Only for block Jacobi meth-
ods. Default: 0.
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partitioner: root node [int] Root node, for greedy algorithm only. Default: 0

schwarz: combine mode [Epetra CombineMode]. Default: Zero. It can assume
one of the following values: Add: Components on the receiv-
ing processor will be added together; Zero: Off-processor
components will be ignored; Insert: Off-processor com-
ponents will be inserted into locations on receiving processor
replacing existing values. Average: Off-processor compo-
nents will be averaged with existing; AbsMax: Magnitudes
of Off-processor components will be maxed with magnitudes
of existing components on the receiving processor. Note that,
for non-zero overlap values, the preconditioner is in general
non-symmetric, due to the handling of the overlapping re-
gion. Set this parameter to Insert if a symmetric precon-
ditioner is required.

amesos: solver type [string]. Defines the Amesos solver to be used by class
Ifpack Amesos. Valid values are: Amesos Lapack,
Amesos Klu, Amesos Umfpack, Amesos Superlu,
Amesos Mumps, Amesos Dscpack. Default:
Amesos Klu Default: Amesos Klu.

fact: level-of-fill [int] Level-of-fill for IC and ILU.

fact: ict level-of-fill [double] Level-of-fill for ICT.

fact: ilut level-of-fill [double] Level-of-fill for ILUT.

fact: relax value [double] Relaxation value.

fact: absolute threshold [double] Value � in equation (16).

fact: relative threshold [double] Value � in equation (16).

7 Analysis Tools
IFPACK contains the following tools to analyze a linear system matrix:

� Function Ifpack Analyze() reports some information about the structure of the matrix, its diagonal
elements, and others.

� FunctionIfpack PrintSparsity() prints on a PostScript file the sparsity pattern of a givenEpetra RowMatrix.
� Function Ifpack PrintSparsitySimple(), to be used only with small matrices, prints on a screen

the sparsity pattern of a given Epetra RowMatrix.
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8 Configuring and Building IFPACK

We recommend to configure and build IFPACK as part of the standard TRILINOS build and configure process. In
fact, IFPACK is built by default if you follow the standard TRILINOS configure and build directions. Please refer to
the TRILINOS documentation for information about the configuration and building of other TRILINOS packages.

To configure and build IFPACK through TRILINOS, you may need do the following (actual configuration
options may vary depending on the specific architecture, installation, and user’s need). It’s assumed that shell
variable $TRILINOS_HOME identifies the TRILINOS directory, and, for example, that we are compiling under
LINUX and MPI.

% cd $TRILINOS_HOME
% mkdir LINUX_MPI
% cd LINUX_MPI
% $TRILINOS_HOME/configure --with-mpi-compilers \

--prefix=$TRILINOS_HOME/LINUX_MPI
% make
% make install

IFPACK is configured and built using the GNU autoconf [4] and automake [5] tools. IFPACKconfiguration
and compilation can be tuned by several flags. The user may type

% configure --help

in the IFPACK source directory for a complete list. Here, we briefly report the list of packages (included or not
in Trilinos) that are supported by IFPACK:

--enable-amesos Enables support for the AMESOS package, which can be used
to solve the local subproblems in Schwarz-type precondition-
ers, or in block Jacobi and block Gauss-Seidel precondition-
ers.

--enable-aztecoo Enable support for the AZTECOO package. AZTECOO is
used in several tests and examples.

--enable-teuchos Enable support for the TEUCHOS package, whose parameters
list is used by several IFPACK classes.

--enable-triutils Enable support for the TRIUTILS package, which is used in
some examples and test to generate the linear system.

--enable-ifpack-metis Enable support for the METIS package, version 4.0 or later.
METIS can be used to create block preconditioners.

Remark 7. IFPACK cannot be compiled without the EPETRA library.
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